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Abstract. We investigate the dynamics of electrons of opposite spin in an inhomogeneous but
unidirectional magnetic field. We compare the quantum expectation values of wavefunctions
obtained from the Dirac equation with the averages of classical ensembles. Both confirm our
analytical predictions for a parameter regime in which the electrons are separated but have
partially spatially overlapping probabilities.

1. Introduction

The interaction of charged particles with spin in inhomogeneous magnetic field
configurations is of wide interest. Historically, the relevance of the spin-field-gradient
force to the spatial dynamics of electrons moving in such fields has been the issue of
considerable debate. In 1928 Pauli, using a line of reasoning attributed to Bohr, argued
that the requirement∇ ·B = 0 results in a Lorentz force along the primary field direction
that would completely overshadow the effect of the spin–field interaction. This debate
culminated in the assertion of Pauli that ‘it is impossible to observe the spin of the electron,
separated fully from its orbital momentum, by means of experiments based on the concept
of classical particle trajectories’ [1].

A series of experiments by Dehmelt and co-workers [2] have called into question the
generality of the Bohr/Pauli edict by studying the dynamics of a single electron of known
spin isolated in a Penning trap. The interaction of spins with inhomogeneous magnetic fields
has also been investigated in the context of the quantum measurement process. Martens and
de Muynck [3] analysed a field of the formB ∝ (−bx, 0, bz− a) in which they assume a
dominant dipole nature (i.e.a � bx or bz in the region of interest).

The complicatedB-field generated by two parallel wires with opposite currents has
been considered by Batelaanet al [4] to study the dynamics of longitudinally spin polarized
electrons. Brillouin [5] had suggested that a similar situation could lead to spatial separation
of the electron spins, related to the classic Stern Gerlach experiment [6], a possibility that
was also dismissed by Pauli [1].

Our aim is to study the electron dynamics in a field configuration of the form
B ∝ (0, 0, x), which is the simplest inhomogeneous field that is physically realizable
(i.e. has zero divergence). This field configuration is commonly used in many areas of
plasma physics [7] and can be generated by a uniform current density in the−y-direction.
In geophysics it is studied in conjunction with charged particle dynamics in the Earth’s
magnetosphere [8], in which one finds regions of magnetic field reversal in so-called
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neutral current sheets. However, this configuration has not been used to study spin–field
interactions, even though its unidirectional nature implies an important consequence. The
spin componentSz is conserved, which allows investigation of the dynamics without the
complication of taking spin flips caused by the precession into account.

In this paper we investigate the dynamical relevance of the coupling between the spin
projection along the field direction and the gradient of the field. For a mixture of spin-up and
spin-down electrons, our investigation reveals a splitting mechanism that is unusual in that
it involves in part a dynamic reduction in the transverse width of the electrons wavepacket
due to the coupling between the spin and the field gradient.

2. Classical ensemble dynamics: analytical results

The semi-classical non-relativistic motion of an electron in an inhomogenous magnetic field
can be approximated by the Pauli-type Hamilton function:

H(r,p) = 1

2

(
p+ 1

c
A

)2

+ 1

c
S · ∇×A (2.1)

whereS denotes the spin,A is the vector potential, and atomic units(e = h̄ = m = 1, c ≈
137) are used. We will focus our analysis on the dynamics in an inhomogeneous field given
by

∇×A = B0(0, 0, x) (2.2)

which can be derived from the vector potentialA = B0
2 (0, x

2, 0). The parameterB0 has
units of magnetic field strength per length.

Our goal is to study the time evolution classically and quantum mechanically and to
investigate the possible spatial separation of spinsSz = ± 1

2 along thex-axis. To model the
quantum mechanical state used below we have chosen an ensemble of classical particles
that are initially distributed according to

P±(r,p,S, t = 0) = 1

(2π1x1px)3
exp

[
−1

2

r2

(1x)2

]
exp

[
−1

2

p2

(1px)2

]
δ

(
Sz ∓ 1

2

)
(2.3)

which has been chosen to minimize the Heisenberg uncertainty product in each coordinate
direction,1x1px = 1

2, and similarly fory andz. We will discuss whether it is possible to
find a suitable parameter regime with respect to theB-field strength, the interaction time, and
the parameters characterizing the initial distribution that will lead to an optimal separation of
electrons with opposite spins. The spin term in equation (2.1)B0

c
Szx suggests that electrons

with spin Sz = − 1
2(Sz = 1

2) move initially in the positive (negative)x-direction. As a
quantitative measure of the degree of separation along thex-axis between both ensembles
P+ andP− we define a function for eitherSz = 1

2 or Sz = − 1
2 particles

Q(t) ≡ 2|〈x(t)〉|
1x(t)

(2.4)

that can be calculated directly from a single ensemble of equal-spin particles. In analogy to
the corresponding quantum mechanical expectation values, the classical ensemble average
〈x〉 denotes the position of the distribution, and1x ≡

√
〈x2〉 − 〈x〉2 is its time-dependent

width. The average separation between the spin-up and -down ensembles is 2|〈x〉|, where
〈x〉 must be calculated from an equal-spin ensemble. If it is larger than the spatial width
of each distribution, we haveQ > 1 and the distributions can be considered separated. It
is therefore sufficient to restrict our discussion below to an ensemble with, e.g.Sz = − 1

2
particles.
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We now discuss the details of the dynamics. Due to the quadratic dependence of the
vector potential on the spatial coordinate, the Hamilton function (2.1) has a remarkable
scaling property that simplifies our analysis significantly. It we introduce new scaled space
and time variables denoted by upper case symbols according to

R ≡
(
B0

4c

)1/3

r (2.5a)

and

T ≡
(
B0

4c

)2/3

t (2.5b)

the dynamics does not depend on the strength of theB-field at all, i.e. H(r,p) =
g2/3H̃ (R,P ), where we denote the scaling parameter asg ≡ B0/(4c) and where

H̃ (R,P ) = 1
2[P + 2(0, X2, 0)]2+ 4SzX. (2.5c)

This scaling leaves the action variable invariant:1X1PX = 1x1px . An important result
of this scale invariance is that the (dimensionless) functionQ does not depend on the
magnitude of the magnetic field strengthB0. For the remainder of the discussion in this
section we use the scaled (but not unitless) variablesR andT unless otherwise noted.

Obviously, H̃ does not depend onY or Z and the canonical momentaPY andPz are
conserved during the dynamics. The Hamilton equations of motion in the three directions
can be simplified to the form:

d2

dT 2
X = − d

dX
V±(X) (2.6a)

d2

dT 2
Y = 4X

d

dT
X (2.6b)

d2

dT 2
Z = 0 (2.6c)

where we define

V±(X) ≡ 2X4+ 2PYX
2± 2X (2.7)

and the negative sign corresponds to the effective potential for a spin-down [Sz = − 1
2]

electron.
It is interesting to note that the motion along theX-direction does not depend on the

motion in theY - or Z-direction and can be derived from the potential of equation (2.7).
If one inserts the Hamilton equation of motionPY = dY

dT − 2X2 into equation (2.6a), one
recovers the expected Lorentz force−4dY

dT X and the spin-gradient force−4Sz on the right-
hand side. The effective potentialsV± for the two possible orientations of the spin are
shown in figure 1 forPY = 0. For Sz = − 1

2 the minimum is atX− = 4−1/3 ≈ 0.63
and the depth of the potential is|V−(X−)| ≈ 0.95. Note that the scaled energy must be
multiplied by g2/3 to give the energy in atomic units. In other words, the depth of the
(unscaled) potential increases with increasingB-field strength. As a numerical example,
we note that the well depth is 1 meV forg = 2.2× 10−7, corresponding to a huge field
gradientB0 = 5.4× 1011 T m−1. The spacing between the minima of the two potentials in
our scaled units isX− − X+ ≈ 1.3, and the maximum expected spatial separation of the
electrons in atomic units,x−−x+ = 1.3g−1/3, decreases with increasing field strength. This
is somewhat counterintuitive as one might expect the spin separation to increase because
the spin coupling in equation (2.1) increases linearly withB0. However, the location of the
minima is also confined by the potential, which grows quartically for large|X| due to the
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Figure 1. Effective spin-gradient potential for spin-up and -down
electrons. The scaled potential functionsV−(X) for spin-down electrons
(Sz = − 1

2) as defined in equation (2.7) forPY = 0. The dashed curve
shows the corresponding potentialV+(X) for Sz = 1

2 .

Lorentz force. Despite the nonlinearity, the equations (2.6) are fully integrable, and, for the
special case of ‘spin-free’ charges, a quasianalytical solution can be derived†.

The term 2PYX2 in the potential reduces the depth of the minimum as well as its
distance fromX = 0. We focus our attention here on the conditions for an optimum spin
separation and setPY = 0 for the remainder of the discussion.

Trivially, a single point particle located initially atX = 0 would move to the left or right
depending on its spin, but because of the non-zero width due to the Heisenberg uncertainty
relation, a more elaborate investigation using an ensemble is necessary. We will now present
a simple analytical estimate that, in order to obtain the maximum possible spin separation,
the spatial width of the initial ensemble should be in the range 0.4< 1X < 1. An effective
separation between the two spins can be expected only if the average energy with respect to
theX-direction in the initial ensemble is small. If the ensemble particles are too energetic the
minima atX± become essentially irrelevant for their motion and the spin separation would
become impossible. Let us assume that we can approximate the energy of the negative
spin ensembleE− as a function of the spatial width asE−(1X) = (1PX)2/2+ V−(1X).
Furthermore, the minimum uncertainty product allows us to rewrite the kinetic energy in
terms of the spatial variance via(1PX)2/2= 1/(81X2). One can show that this energy is
negative(E(1X) < 0) only if the width is restricted to the narrow range 0.4< 1X < 1. A
smaller width leads to too large a kinetic energy and a larger width corresponding to more
particles located at the sharply rising wings of the quartic potential leads to an undesired
larger potential energy.

The prediction that the optimum initial width should be of the same order as the spacing
between the two minimaX− − X+ ≈ 1.3 suggests that the distribution composed of, e.g.
Sz = − 1

2 electrons will initially reduce its width as its centre moves to the right. This
reduction in width results from those ensemble particles (with|X| > 0.6) that are initially
far from the origin where they experience an inward force directed towards the centre that
acts against the natural spreading tendency. We will see below that both a decrease of the
distribution width together with an increase in〈X〉 will lead to an effective separation of
both spins(Q > 1). We can also give a qualitative estimate for the timeT ∗ required for
the ensembles to drift toward the minima. Let us approximate this time by the time it takes
particles that are initially located atX = −1X to move towards the minimum atX−. As
figure 1 shows, the slope of the potentialV−(X) is nearly constant(= 2) for |X| 6 0.4,
and we can approximate the particle’s motion towardsX− as uniformly accelerated. For
X = −0.6 this time is aboutT ∗ = 1.1.

† A solution in terms of complementary incomplete elliptic integrals can be found in the second of [8].
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Figure 2. Degree of spin separation. Displayed is the maximum separation factorQ =
2〈X〉/1X defined in equation (2.4) as a function of the initial spatial width1X of the ensemble
P−. The maximumQ was obtained from 20 000 trajectories that were integrated in time
according to equation (2.6). For each of the 100 ensembles the maximumQ during the time
evolution was monitored. The interaction time required to produce the largestQ was in almost
all cases close to 1.1.

To test these analytical estimates for the optimum width and separation time and to obtain
an estimate for the maximum achievable degree of separationQ that can be obtained in our
B-field configuration, we have solved the equations of motion equation (2.6) numerically
for 20 000 particles that were distributed according toP− of equation (2.3). In figure 2
we display our main results. During the interaction time 0< T < 2.6 we have recorded
the maximum separation via the factorQ(T ) defined in equation (2.4). We have repeated
the simulations for 100 ensembles with various initial widths in the range 0< 1X < 2.
The sharply rising wings of the quartic potentialsV± constrain the transverse motion of the
particles and thus restrict the maximum possible value forQ, i.e. an arbitrarily large degree
of separation is not possible. The graph suggests that the optimum initial width is around
1X ≈ 0.6±0.3 for which separation factors ofQ > 1.5 can be achieved. This agrees well
with our analytical estimate that this width should be in the range 0.4 < 1X < 1. The
corresponding maximumQ factor is close to 2.4. This numerical value is large enough to
suggest that indeed it is possible to separate the spins, but the distributions overlap partially.
The small fluctuations in the graph are expected for ensemble averages and scale with the
inverse square root of the number of particles.

Using other data obtained from the same series of simulations we have also investigated
a histogram of the distribution of those timesT ∗ at which theQ factor took its maximum
value, i.e.Qmax(T ) = Q(T ∗). The most probable timeT ∗ was found to be close to 1.1 and
the distribution around this value had a full width at half maximum of 0.1. This value for
T ∗ agrees well with our analytical estimate.

To investigate the relative role of the initial momentum uncertainty and of the magnitude
of the spin, we have repeated the simulations leading to figure 2 for ensembles whose
spatial distribution was again given by equation (2.3), but whose initial momenta in the
X-direction were sharp, i.e.1PX = 0. In this unphysical test case (which would obviously
violate Heisenberg’s uncertainty relation) the maximumQ decreases with increasing spatial
width, but values ofQ above 100 clearly show the importance of a small1PX for an
efficient separation. This finding is in agreement with another set of simulations for which
1X1PX = 5 that led to a maximumQ below 0.25. To investigate the scaling of the
separation with the size of the spin, we have repeated the simulation of figure 2 with initial
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Figure 3. Final spatial distribution. We show the distribution of the position of 5000 particles
with Sz = − 1

2 at (scaled) timeT = 1.3. The initial distribution of width1X = 0.7 is shown
in the inset.

spins that were (artificially) 10 times larger than permitted by nature, i.e.Sz = −5. The
graph was similar to that obtained forSz = − 1

2, but with values ofQ that were about six
times larger.

In figure 3 we display the final spatial distributionP−(X, T ) of the particles atT = 1.3
for 5000 spin-down particles. The corresponding distributionP+(X, T ) for the spin-up
particles is practically mirror symmetric,P+(X, T ) = P−(−X, T ). The inset shows the
initial distribution, which was chosen to have a variance of1X = 0.7. The maximum
separation factor for this case isQ ≈ 2.1, as is evident from the graph in figure 2.

3. Quantum dynamics: numerical results

We now compare the results obtained from the classical ensembles with those obtained from
quantum mechanical wavepackets. In order to investigate the quantum dynamics we have
solved numerically the full time-dependent Dirac equation for an electron in the magnetic
field described by equation (2.2):

↔
H= c ↔α

(
p+ 1

c
A

)
+ c2

↔
β (3.1)

where
↔
α and

↔
β denote the well known 4× 4 Dirac matrices [9]. It is well known that the

Hamilton function (2.1) can be derived perturbatively from the Dirac Hamiltonian
↔
H if one

omits terms of order 1/c2 and higher. As the initial state for our numerical solution we use
the two spinor wavefunctions

9+(r, t = 0) = (F (r), 0, 0, 0) (3.2a)

9−(r, t = 0) = (0, F (r), 0, 0) (3.2b)

corresponding to states with a spin along thez-direction 1
2

〈
9±

∣∣∣∣[ σz 0
0 σz

]∣∣∣∣9±〉 = ± 1
2,

whereσz denotes the Pauli 2× 2 spin matrix. As a spatial wavefunction we have used

F(r) = [2π(1x)2]−3/4 exp[−(r/(21x))2] (3.3)

with an equal spatial uncertainty of1x for each coordinate direction. This wavefunction
leads to exactly the same moments inr and p as the classical ensemble distributionP±
of equation (2.3). Because the spatial width is chosen orders of magnitude larger than the



Spin dynamics of electrons 9337

Figure 4. Final spatial distribution of the wavefunction. Final spatial probability of the quantum
wavefunction9 (equation (3.5)) and9− (equation (3.2b)) (broken curve) at (scaled) time
T = 1.3. The densities along theX-direction were obtained from the Dirac spinor wavefunction
via equation (3.4). (The parameters used in the simulation wereg = 0.1 au,1x = 1.5 au,
t = 5.6 au.)

Compton wavelength and we do not consider relativistic velocities, we can safely set the
very small third and fourth spinor components in equation (3.2) equal to zero.

The Dirac equation is solved numerically on a discretized spacetime lattice using a
generalized split-operator technique. In a typical simulation the product of the number of
total grid points and the time step is on the order of 1010 and the calculation takes several
days of CPU time on a fast multiprocessor computer. To establish the numerical accuracy
we have doubled the number of time steps and also the number of grid points in each
coordinate direction and found that the final wavefunctions were essentially unchanged.
For details on the numerical algorithm we refer the reader to [10].

We now display the final spatial probability along thex-direction that is obtained from
the fully time-evolved Dirac spinor wavefunction via

|9x(t)|2 ≡
∫ ∫

dy dz
4∑
i=1

|9i(x, y, z, t)|2. (3.4)

In figure 4 the broken curve corresponds to the spatial probability density for the initial spin
superposition state

9(r, t = 0) = 1√
2

[9+(r, t = 0)+9−(r, t = 0)]. (3.5)

The full curve shows the corresponding time-evolved two-peaked probability density
|9x(t)|2. The absence of any spatial interference structure between both spin contributions
is, of course, expected as a result of the orthogonality of the spinors9+ and9−. The
dotted curve shows the probability density obtained from the time-evolved spin-down state
9−(r, t) from equation (3.2b). In agreement with our semiclassical results from section 2,
the quantum case also predicts that it is possible to separate the spins, but again both
distributions overlap partially. We should mention that the maximum quantum mechanical
separation factor in this case isQ = 2.6, remarkably close to the value obtained from the
classical ensembles.

In figure 5 we present a direct comparison between the first- and second-order moments
obtained from the classical ensemble calculationsP− (dotted curves) and those from the
quantum solutions9− of the Dirac equation. The classical ensemble average〈x(t)〉cl

agrees remarkably well with the quantum expectation value〈x(t)〉. The quantum excursion,
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Figure 5. Direct comparison of the results for the quantum expectation values〈. . .〉 versus
classical ensemble averages〈. . .〉cl (dotted curves). For comparison, the broken curve at the
top corresponds to the natural wavepacket spreading for an ensemble or wavefunction in the
absence of any magnetic field(B0 = 0).

however, is slightly larger than that of the classical ensemble and the width of the quantum
wavepacket is slightly smaller than that of the ensemble. The largest relative difference
between the quantum and the ensemble average value is only about 7%.

We have used atomic units in this figure to more easily relate the spatial variances to that
of the well known force-free wavepacket spreading:1x(t)2 = 1x2 +1p2t2. The broken
curve in the upper left corner of the figure displays this growth of spatial width of a quantum
wavepacket in the absence of any magnetic field(B0 = 0). This spreading is, of course,
identical to that of the corresponding force-free classical ensemble1x(t) = 1x(t)cl [11].

4. Discussion

We now summarize our primary results. These results were guided by simple analytical
estimates derived from dynamics in a one-dimensional effective potential and agree with
both numerical simulations of classical particle ensembles and fullyab initio solutions of
the Dirac equation.

(1) Spatial separation transverse to the spin projection axis for both ensembles and
quantum wavepackets is found for the magnetic field configuration given by equation (2.2).
The degree of separation, described byQ(t) from equation (2.4), is independent of the
magnetic field strength (or, more precisely, the parameterB0 describing the field gradient
in equation (2.2)). Only the time required to achieve maximum separation is dependent on
B0.

(2) The maximum achievable separation for this field configuration is roughly twice the
initial width of the classical or quantum distribution. There is an unavoidable partial overlap
of the final spin distributions that has its origin in the initial momentum spread according
to the uncertainty principle.

(3) The initial spatial width of the wavepacket or ensemble required for optimal
separation and the required interaction time are uniquely determined by the parameterB0

in equation (2.2). In terms of the scaling factorg = B0/4c, we have for the initial spread
1x ∼= 0.6g−1/3 and for the required interaction time for maximum separationt∗ ∼= 1.1g−2/3.

To aid the reader with conversion from the scaled units to SI units, we give the following
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expressions for the requiredB0 and t∗ in terms of the chosen initial spread1x:

B0 = 7.8× 10−14 T m2

(1x)3
(4.1a)

t∗ = 2.6× 104 s

m2
(1x)2. (4.1b)

A general remark on the direct comparison of classical and quantum expectation values
is in order. It is interesting to note that the spin-up and -down superposition state in thez-
direction equation (3.5) used in our quantum analysis is identical to an eigenstate of the spin
operator in thex-direction: 1√

2
(|+, z〉 + |−, z〉) = |+, x〉. An individual classical particle

with an initial spin in thex-direction would not couple to the gradient force at all, as its
time-dependent spinS(t) remains confined to the(Sx, Sy) plane in our unidirectionalB-field
along thez-axis. In our numerical analysis we have chosen the classical ensemble to consist
of equal numbers of particles withSz = 1

2 andSz = − 1
2. This ensemble, however, has a

zero ensemble average value〈Sx〉cl = 0 and not〈Sx〉 = 1
2 as for the quantum superposition

state. To find a better match with respect to the spin along thex-axis as well, one would
have to construct a classical ensemble from individual particles for which〈Sx〉cl = 1

2 and
〈Sy〉cl = 〈Sz〉cl = 0 and also for which〈Sx2〉cl = 〈Sy2〉cl = 〈Sz2〉cl = 1

4 as required by the
corresponding expectation values for the quantum wavefunction. For an arbitraryB-field
configuration, we have not been able to construct a classical ensemble of spin particles
that can satisfy all initial conditions and remain inside the (quantum mechanical) range
− 1

2 6 〈Si(t)〉cl 6 1
2 for i = x, y, z during the entire time evolution. This reflects, of

course, the well known fact that the spin dynamics cannot be described completely in
terms of classical ensembles; there is after all something intrinsically quantum mechanical
about spin [12]. In view of this it is remarkable that our analytical estimates based on
the simple particle mechanics including spin agree with the quantum results. This good
agreement could be due to the conservation of thez-projection of the spin for ourB-field
configuration.

We should also mention that an interpretation of the electron dynamics in terms of
the usual Landau states [13] (stationary states in homogeneous fields) is difficult for our
field configuration due to the field reversal in thex = 0 plane. We have not been able
to find energy eigenstates of the Dirac operator for inhomogeneous magnetic fields. These
generalized Landau states would be more suitable for our situation.

To summarize, we have identified a window in the parameter regime for which it is
possible to separate spins using an inhomogeneous magnetic field. The degree of separation
depends on the Heisenburg uncertainty product of the initial distribution in space and
momentum with respect to the magnetic field’s gradient direction. The degree of separation
is enhanced if the uncertainty product in space and momentum along the field’s gradient
direction is minimal in the initial distribution.
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